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Using a new oxazoline-phosphonite P,N ligand, we estab-
lish that in contrast with commonly held belief, bidentate
ligands can lead to unusually stable �1-allyl complexes
of Pd(II); CO insertion into their Pd–C �-bond affords
the corresponding 3-butenoyl complexes under mild
conditions.

Transition metal allyl complexes display a rich chemistry and
have a considerable importance in homogeneous catalysis
where they often represent key intermediates.1 Whereas η3 bond-
ing mode is the most general for this ligand, η1-allyl complexes
have been isolated mainly with platinum,2 rhodium,3 very
recently with iridium,4 or early transition metals.5 The bonding
features of an allyl fragment to a transition metal affect the
stereochemistry of reactions proceeding via allyl intermediates
and it is well known in Pd-allyl chemistry that an η3–η1–η3

dynamic behaviour has considerable relevance to enantio-
selection.1 It is therefore essential to recognize the exact bond-
ing mode of the allyl ligand in a complex in order to understand
or rationalize its reactivity. In Pd chemistry, the η3-bonding
mode of the allyl ligand is the rule and only very few Pd com-
plexes containing η1-allyl ligands have been characterized in
solution,6 and even more rarely in the solid-state,7,8 despite their
considerable importance as reactive species or proposed inter-
mediates in C–C coupling reactions.1 Although the idea that a
strong and rigid tridentate ancillary ligand coordinated to a
Pd() centre will trigger the occurrence of the rare η1-bonding
mode of the allyl ligand is completely logical,6,7 we now estab-
lish that this does not represent a prerequisite. Reaction of the
new bidentate ligand 1-(4,4�-dimethyl-4,5-dihydrooxazol-2-yl)-
1-methyl)diphenylphosphonite,9 abbreviated NOPMe2, with
[Pd(η3-C3H5)(µ-Cl)]2

10 afforded in 89% yield the new η1-allyl
chloro Pd() complex 1 which has been fully characterized (see
ESI),† including by X-ray diffraction.‡ There are two different
but almost identical molecules in the asymmetric unit. One of
them is represented in Fig. 1.

The 31C NMR spectrum is very diagnostic for a η1-allyl
ligand, with characteristic chemical shifts at δ 29.5, 105.9, and
141.0 for the Pd–CH2, ��CH2 and –CH�� carbons.8a Consistent
with Pearson’s antisymbiotic effect,11 the η1-allyl ligand is trans
to the nitrogen donor (Fig. 1), a ligand of weaker trans influ-
ence than phosphorus. These results allow us to answer the

† Electronic supplementary information (ESI) available: preparations
and selected spectroscopic data for 1 and 4–6. See http://www.rsc.org/
suppdata/dt/b2/b212393m/

question of the need or not for a tridentate ligand to stabilize
η1-allyl Pd() complexes. With the ligand bis(2-oxazoline-4,4-
dimethyl-2-hydroxydimethyl)phenylphosphonite, abbreviated
NOPONMe2, we recently characterized another η1-allyl chloro
Pd complex, 2, in which NOPONMe2 did not behave as a tri-
dentate, but as a chelating ligand with a dangling oxazoline
moiety.8a

This behaviour was not due to an impossibility for NO-
PONMe2 to function as a planar tridentate ligand since
[Pd(NCMe)(NOPONMe2-N,P,N )](BF4)2 3 is perfectly stable.8a

Although the dangling oxazoline arm in 2 was involved in the
dynamic behaviour of the complex, our present results indicate
that it did not play any significant role in promoting the η1-allyl
bonding mode. This establishes that the paradigm for a strong

Fig. 1 ORTEP 18 view of the structure of [Pd(η1-C3H5}Cl(NOPMe2-
N,P)] 1. Thermal ellipsoids shown at 50% probability. Selected bond
lengths (Å) and angles (�): Pd(1)–P(1) 2.200(1), Pd(1)–N(1) 2.180(2),
Pd(1)–Cl(1) 2.387(1), Pd(1)–C(21) 2.070(2), C(21)–C(22) 1.475(3),
C(22)–C(23) 1.322(4); C(21)–Pd(1)–P(1) 92.31(7), C(21)–Pd(1)–Cl(1)
88.43(7), N(1)–Pd(1)–P(1) 83.22(5), N(1)–Pd(1)–Cl(1) 96.15(5), Pd(1)–
C(21)–C(22) 101.5(1), C(21)–C(22)–C(23) 126.5(2), Pd(1)–P(1)–O(1)
112.5(6), P(1)–O(1)–C(13) 123.2(1), O(1)–C(13)–C(16) 107.9(1), C(13)–
C(16)–N(1) 125.1(2), C(16)–N(1)–Pd 121.5(1).
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tridentate ligand being required to observe the η1-allyl bonding
mode in Pd() chemistry is no longer valid.

As expected, chloride abstraction from 1 led to the cationic
η3-allyl Pd() complex 4 (Fig. 2). †‡ The longer Pd–C(23) dis-
tance compared to Pd–C(21) reflects the larger trans influence
of the P donor. Its 1H NMR spectrum in CDCl3 at 297 K shows
an AB spin system for the two methylenic protons of the oxazo-
line and the methyl region exhibits two peaks at δ 1.70 and 1.79
for the diastereotopic OC(CH3)2 protons. Unlike the situation
in [Pd(η3-C3H5}(NOPONMe2-N,P)]PF6,

8a the five protons of the
allyl fragment of 4 give rise to five peaks at room temperature,
with the terminal protons cis to P exhibiting two doublets at
δ 2.89 (3JHH = 12.3 Hz) and 3.69 (3JHH = 6.9 Hz), respectively.
These data indicate either a static situation or slow rotation on
the NMR time scale of the allyl ligand about the (η3-C3H5)–Pd
axis and no η3–η1–η3 interconversion, the terminal syn- and
anti-protons remaining non-equivalent.12

Bubbling of CO through a solution of 1 in toluene led to the
formation of the insertion product 5. †

Its ν(C��O) band at 1688 cm�1 is indicative of the formation of
an acyl ligand and a resonance at δ = 226.7 ppm in the 13C
NMR spectrum with a small 2J(P,C) coupling of 10.0 Hz shows
that the acyl group resides in a cis position relative to the phos-
phorus.13 For comparison, the related insertion product 6 was
prepared from 2 (Fig. 3). †‡ The large high-field shift (∆δ =
�20 ppm) of the 31P NMR resonance (δ = 118.4), compared to
2 (δ = 138.1), also indicates the cis arrangement of the acyl
group relative to the P atom.13a,14 The geometry around pal-
ladium approximates square-planar, with slight deviations aris-
ing from the angles P–Pd–C(23) and N(1)–Pd–Cl of 85.29(5)
and 98.20(4)�, respectively. The 1H NMR spectrum of 6 at room
temperature shows only one AB spin system assigned to the
four OCH2 protons. † The methyl region contains four lines
including a broad singlet for the diastereotopic NC(CH3)2,
which is similar to the situation in cis-[PdCl2(NOPONMe2-
N,P)],8a and indicates that the ligand behaves as a fluxional,
hemilabile P,N chelate. In both 5 and 6, the preference for
the soft carbon ligand to avoid a position trans to P is again
consistent with the antisymbiotic effect.11

Fig. 2 ORTEP 18 view of the structure of [Pd(η3-C3H5}(NOPMe2-
N,P)]PF6 4. Thermal ellipsoids shown at 50% probability. Selected bond
lengths (Å) and angles (�): Pd–P 2.244(1), Pd–N 2.112(2), Pd–C(21)
2.102(3), Pd–C(22) 2.144(4), Pd–C(23) 2.268(3), C(21)–C(22) 1.330(5),
C(22)–C(23) 1.245(6); N–Pd–P 91.41(5), N–Pd–C(21) 173.4(1), N–Pd–
C(23) 106.5(1), P–Pd–C(21) 95.17(9), P–Pd–C(22) 130.1(1), P–Pd–
C(23) 162.1 (1), C(21)–Pd–C(23) 66.9(1), P–O(1)–C(13) 123.3(1), O(1)–
C(13)–C(16) 109.0(1), C(13)–C(16)–N 129.0(2).

These carbonylation reactions under very mild conditions
contrast with the inactivity of [Pd(η3-2-MeC3H4)Cl(PMe3)]

15

and support the view that CO insertion into η3-allyl palladium
cationic complexes occurs via first coordination of the counter
ion to form an η1-allyl intermediate. This hypothesis was pre-
sented Ozawa, Yamamoto and co-workers although they had
not succeeded in isolating such η1-allyl intermediates.15 In
contrast to e.g. trans-[Pd{C(O)CH2CH��CH2}Br(PMePh2)2],

15

complexes 5 and 6 exhibit remarkable stability towards de-
carbonylation or decomposition, probably because of the
energetically favourable trans-P–Pd–Cl and trans-N–Pd–C
arrangements.8a Attempts to isolate further insertion products
with ethylene were unsuccessful, consistent with the lower
reactivity of neutral complexes,16 and prolonged reaction times
(>1 day) led to progressive decarbonylation and formation
of the corresponding η3-allyl complexes (in situ 1H NMR
monitoring).

In conclusion, we have clearly established that appropriate
bidentate chelating ligands are suitable to stabilize η1-allyl Pd
complexes and this still rare bonding situation may occur more
often than expected in numerous stoichiometric or catalytic
transformations involving Pd() allyl complexes. The import-
ance of halide effects on stoichiometric and catalytic reaction
involving transition metal complexes has been recently
reviewed.17 In particular, it is noteworthy that the syn-anti
isomerization of cationic, π-allyl Pd() complexes is consider-
ably enhanced in the presence of added chloride and that
catalytic amounts of halide were found to beneficially influence
both the regio- and enantio-selectivity of asymmetric allylic
alkylations.17
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Notes and references
‡ X-Ray structural analyses: the diffraction intensities were collected on
a Kappa CCD diffractometer using Mo-Kα graphite monochromated
radiation (λ = 0.71069 Å). The structures were solved by heavy-atom
Patterson methods and expanded Fourier techniques. The non-
hydrogen atoms were refined anisotropically. Hydrogen atoms were
fixed in calculated positions with C–H = 0.98 Å.

Fig. 3 ORTEP 18 view of the structure of [Pd{C(O)C3H5}-
Cl(NOPONMe2-N,P)] 6. Thermal ellipsoids shown at 50% probability.
Selected bond lengths (Å) and angles (�): Pd–P 2.210(1), Pd–N(1)
2.222(1), Pd–Cl 2.372(1), Pd–C(23) 1.983(2), C(23)–O(5) 1.201(2),
C(23)–C(24) 1.535(3), C(24)–C(25) 1.493(3), C(25)–C(26) 1.306(3);
C(23)–Pd–P 88.69(5), C(23)–Pd–Cl 85.29(5), N(1)–Pd–P 88.49(4),
N(1)–Pd–Cl 98.20(4), Pd–P–O(1) 112.07(5), Pd–P–O(3) 112.94(5).
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Crystal data for 1: C23H29ClNO2PPd, Mr = 524.29, triclinic, space
group P1̄, a = 9.952(5), b = 12.957(5), c = 18.271(5) Å, α = 89.915(5),
β = 89.447(5), γ = 86.007(5)�, V = 2350.2(16) Å3, F(000) = 1072, Z = 4,
Dc = 1.482 g cm�3, µ = 0.990 mm�1, T  = 173(2) K, R1 = 0.0335,
wR2 = 0.0853, GOF = 1.032 for 523 parameters.

Crystal data for 4: C23H29F6NO2P2Pd, Mr = 633.81, orthorhombic,
space group Pbca, a = 15.136(5), b = 17.392(5), c = 20.248(5) Å,
V = 5330(3) Å3, F(000) = 2560, Z = 8, Dc = 1.580 g cm�3, µ = 0.879 mm�1,
R1 = 0.0393, wR2 = 0.1058, GOF = 0.942 for 316 parameters.

Crystal data for 6: C26H38ClN2O5PPd, Mr = 631.4, monoclinic, space
group P21/c, a = 14.643(2), b = 10.970(2), c = 18.216(3) Å, β = 97.017(5)�,
V = 2904.2(8) Å3, F(000) = 1304, Z = 4, Dc = 1.444 g cm�3, µ = 0.823
mm�1, T  = 173(2) K, R1 = 0.0467, wR2 = 0.1215, GOF = 1.013 for 325
parameters. CCDC reference numbers 193036–193038. See http://
www.rsc.org/suppdata/dt/b2/b212393m/ for crystallographic data in
CIF or other electronic format.
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